# pysal.lib.weights.KNN¶

class pysal.lib.weights.KNN(data, k=2, p=2, ids=None, radius=None, distance_metric='euclidean', **kwargs)[source]

Creates nearest neighbor weights matrix based on k nearest neighbors.

Parameters: kdtree : object PySAL KDTree or ArcKDTree where KDtree.data is array (n,k) n observations on k characteristics used to measure distances between the n objects k : int number of nearest neighbors p : float Minkowski p-norm distance metric parameter: 1<=p<=infinity 2: Euclidean distance 1: Manhattan distance Ignored if the KDTree is an ArcKDTree ids : list identifiers to attach to each observation w : W instance Weights object with binary weights

pysal.lib.weights.weights.W

Notes

Ties between neighbors of equal distance are arbitrarily broken.

Examples

>>> import pysal.lib
>>> points = [(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
>>> kd = pysal.lib.cg.kdtree.KDTree(np.array(points))
>>> wnn2 = pysal.lib.weights.KNN(kd, 2)
>>> [1,3] == wnn2.neighbors[0]
True


ids

>>> wnn2 = KNN(kd,2)
>>> wnn2[0]
{1: 1.0, 3: 1.0}
>>> wnn2[1]
{0: 1.0, 3: 1.0}


now with 1 rather than 0 offset

>>> wnn2 = pysal.lib.weights.KNN(kd, 2, ids=range(1,7))
>>> wnn2[1]
{2: 1.0, 4: 1.0}
>>> wnn2[2]
{1: 1.0, 4: 1.0}
>>> 0 in wnn2.neighbors
False

Attributes: asymmetries List of id pairs with asymmetric weights. cardinalities Number of neighbors for each observation. component_labels Store the graph component in which each observation falls. diagW2 Diagonal of $$WW$$. diagWtW Diagonal of $$W^{'}W$$. diagWtW_WW Diagonal of $$W^{'}W + WW$$. histogram Cardinality histogram as a dictionary where key is the id and value is the number of neighbors for that unit. id2i Dictionary where the key is an ID and the value is that ID’s index in W.id_order. id_order Returns the ids for the observations in the order in which they would be encountered if iterating over the weights. id_order_set Returns True if user has set id_order, False if not. islands List of ids without any neighbors. max_neighbors Largest number of neighbors. mean_neighbors Average number of neighbors. min_neighbors Minimum number of neighbors. n Number of units. n_components Store whether the adjacency matrix is fully connected. neighbor_offsets Given the current id_order, neighbor_offsets[id] is the offsets of the id’s neighbors in id_order. nonzero Number of nonzero weights. pct_nonzero Percentage of nonzero weights. s0 s0 is defined as s1 s1 is defined as s2 s2 is defined as s2array Individual elements comprising s2. sd Standard deviation of number of neighbors. sparse Sparse matrix object. transform Getter for transform property. trcW2 Trace of $$WW$$. trcWtW Trace of $$W^{'}W$$. trcWtW_WW Trace of $$W^{'}W + WW$$.

Methods

 asymmetry([intrinsic]) Asymmetry check. from_adjlist(adjlist[, focal_col, …]) Return an adjacency list representation of a weights object. from_array(array, *args, **kwargs) Creates nearest neighbor weights matrix based on k nearest neighbors. from_dataframe(df[, geom_col, ids]) Make KNN weights from a dataframe. from_networkx(graph[, weight_col]) Convert a networkx graph to a PySAL W object. from_shapefile(filepath, *args, **kwargs) Nearest neighbor weights from a shapefile. full() Generate a full numpy array. get_transform() Getter for transform property. plot(gdf[, indexed_on, ax, color, node_kws, …]) Plot spatial weights objects. remap_ids(new_ids) In place modification throughout W of id values from w.id_order to new_ids in all reweight([k, p, new_data, new_ids, inplace]) Redo K-Nearest Neighbor weights construction using given parameters set_shapefile(shapefile[, idVariable, full]) Adding meta data for writing headers of gal and gwt files. set_transform([value]) Transformations of weights. symmetrize([inplace]) Construct a symmetric KNN weight. to_WSP() Generate a WSP object. to_adjlist([remove_symmetric, focal_col, …]) Compute an adjacency list representation of a weights object. to_networkx() Convert a weights object to a networkx graph
 from_WSP from_file
__init__(data, k=2, p=2, ids=None, radius=None, distance_metric='euclidean', **kwargs)[source]

Initialize self. See help(type(self)) for accurate signature.

Methods

 __init__(data[, k, p, ids, radius, …]) Initialize self. asymmetry([intrinsic]) Asymmetry check. from_WSP(WSP[, silence_warnings]) from_adjlist(adjlist[, focal_col, …]) Return an adjacency list representation of a weights object. from_array(array, *args, **kwargs) Creates nearest neighbor weights matrix based on k nearest neighbors. from_dataframe(df[, geom_col, ids]) Make KNN weights from a dataframe. from_file([path, format]) from_networkx(graph[, weight_col]) Convert a networkx graph to a PySAL W object. from_shapefile(filepath, *args, **kwargs) Nearest neighbor weights from a shapefile. full() Generate a full numpy array. get_transform() Getter for transform property. plot(gdf[, indexed_on, ax, color, node_kws, …]) Plot spatial weights objects. remap_ids(new_ids) In place modification throughout W of id values from w.id_order to new_ids in all reweight([k, p, new_data, new_ids, inplace]) Redo K-Nearest Neighbor weights construction using given parameters set_shapefile(shapefile[, idVariable, full]) Adding meta data for writing headers of gal and gwt files. set_transform([value]) Transformations of weights. symmetrize([inplace]) Construct a symmetric KNN weight. to_WSP() Generate a WSP object. to_adjlist([remove_symmetric, focal_col, …]) Compute an adjacency list representation of a weights object. to_networkx() Convert a weights object to a networkx graph

Attributes

 asymmetries List of id pairs with asymmetric weights. cardinalities Number of neighbors for each observation. component_labels Store the graph component in which each observation falls. diagW2 Diagonal of $$WW$$. diagWtW Diagonal of $$W^{'}W$$. diagWtW_WW Diagonal of $$W^{'}W + WW$$. histogram Cardinality histogram as a dictionary where key is the id and value is the number of neighbors for that unit. id2i Dictionary where the key is an ID and the value is that ID’s index in W.id_order. id_order Returns the ids for the observations in the order in which they would be encountered if iterating over the weights. id_order_set Returns True if user has set id_order, False if not. islands List of ids without any neighbors. max_neighbors Largest number of neighbors. mean_neighbors Average number of neighbors. min_neighbors Minimum number of neighbors. n Number of units. n_components Store whether the adjacency matrix is fully connected. neighbor_offsets Given the current id_order, neighbor_offsets[id] is the offsets of the id’s neighbors in id_order. nonzero Number of nonzero weights. pct_nonzero Percentage of nonzero weights. s0 s0 is defined as s1 s1 is defined as s2 s2 is defined as s2array Individual elements comprising s2. sd Standard deviation of number of neighbors. sparse Sparse matrix object. transform Getter for transform property. trcW2 Trace of $$WW$$. trcWtW Trace of $$W^{'}W$$. trcWtW_WW Trace of $$W^{'}W + WW$$.