References

[Ans95]Luc Anselin. Local indicators of spatial association-LISA. Geographical Analysis, 27(2):93–115, Sep 1995. URL: http://dx.doi.org/10.1111/j.1538-4632.1995.tb00338.x, doi:10.1111/j.1538-4632.1995.tb00338.x.
[AR99]Renato M. Assuncao and Edna A. Reis. A new proposal to adjust Moran’s I for population density. Statistics in Medicine, 18(16):2147–2162, Aug 1999. URL: http://dx.doi.org/10.1002/(sici)1097-0258(19990830)18:16<2147::aid-sim179>3.0.co;2-i, doi:10.1002/(sici)1097-0258(19990830)18:16<2147::aid-sim179>3.0.co;2-i.
[BB03]Frank Bickenbach and Eckhardt Bode. Evaluating the Markov property in studies of economic convergence. International Regional Science Review, 26(3):363–392, 2003. URL: https://doi.org/10.1177/0160017603253789, doi:10.1177/0160017603253789.
[Chr05]David Christensen. Fast algorithms for the calculation of kendall’s τ. Computational Statistics, 20(1):51–62, Mar 2005. URL: https://doi.org/10.1007/BF02736122”, doi:10.1007/BF02736122.
[CO81]A.D. Cliff and J.K. Ord. Spatial Processes: Models and Applications. Pion, London, 1981.
[Dij59]E. W. Dijkstra. A Note on Two Probles in Connexion with Graphs. Numerische Mathematik, 1(1):269–271, 1959. doi:10.1007/BF01386390.
[FSZ04]John P. Formby, W. James Smith, and Buhong Zheng. Mobility measurement, transition matrices and statistical inference. Journal of Econometrics, 120(1):181–205, 2004. URL: http://www.sciencedirect.com/science/article/pii/S0304407603002112, doi:https://doi.org/10.1016/S0304-4076(03)00211-2.
[GO10]Arthur Getis and J. K. Ord. The analysis of spatial association by use of distance statistics. Geographical Analysis, 24(3):189–206, Sep 2010. URL: http://dx.doi.org/10.1111/j.1538-4632.1992.tb00261.x, doi:10.1111/j.1538-4632.1992.tb00261.x.
[HGC81]L. J. Hubert, R. G. Golledge, and C. M. Costanzo. Generalized procedures for evaluating spatial autocorrelation. Geographical Analysis, 13(3):224–233, Sep 1981. URL: http://dx.doi.org/10.1111/j.1538-4632.1981.tb00731.x, doi:10.1111/j.1538-4632.1981.tb00731.x.
[Jia13]Bin Jiang. Head/tail breaks: a new classification scheme for data with a heavy-tailed distribution. The Professional Geographer, 65(3):482–494, Aug 2013. URL: http://dx.doi.org/10.1080/00330124.2012.700499, doi:10.1080/00330124.2012.700499.
[KS67]John G. Kemeny and James Laurie Snell. Finite markov chains. Van Nostrand, 1967.
[KKK62]S. Kullback, M. Kupperman, and H. H. Ku. Tests for contingency tables and Markov chains. Technometrics, 4(4):573–608, 1962. URL: http://www.jstor.org/stable/1266291, doi:10.2307/1266291.
[OY01]Atsuyuki Okabe and Ikuho Yamada. The K-Function Method on a Network and Its Computational Implementation. Geographical Analysis, 33(3):271–290, 2001.
[OG10]J. K. Ord and Arthur Getis. Local spatial autocorrelation statistics: distributional issues and an application. Geographical Analysis, 27(4):286–306, Sep 2010. URL: http://dx.doi.org/10.1111/j.1538-4632.1995.tb00912.x, doi:10.1111/j.1538-4632.1995.tb00912.x.
[PTVF07]William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery. Numerical recipes: the art of scientific computing. Cambridge Univ Pr, Cambridge, 3rd edition, 2007.
[RS13]Sergio J Rey and Richard J Smith. A spatial decomposition of the Gini coefficient. Letters in Spatial and Resource Sciences, 6:55–70, 2013.
[Rey01]Sergio J. Rey. Spatial empirics for economic growth and convergence. Geographical Analysis, 33(3):195–214, 2001. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1538-4632.2001.tb00444.x, doi:10.1111/j.1538-4632.2001.tb00444.x.
[Rey04]Sergio J. Rey. Spatial dependence in the evolution of regional income distributions. In A. Getis, J. Múr, and H. Zoeller, editors, Spatial econometrics and spatial statistics, pages 193–213. Palgrave, Hampshire, 2004.
[Rey14]Sergio J. Rey. Fast algorithms for a space-time concordance measure. Computational Statistics, 29(3-4):799–811, 2014. URL: https://doi.org/10.1007/s00180-013-0461-2, doi:10.1007/s00180-013-0461-2.
[Rey16]Sergio J. Rey. Space–time patterns of rank concordance: local indicators of mobility association with application to spatial income inequality dynamics. Annals of the American Association of Geographers, 106(4):788–803, 2016. URL: https://doi.org/10.1080/24694452.2016.1151336, doi:10.1080/24694452.2016.1151336.
[RA07]Sergio J. Rey and Luc Anselin. PySAL: A Python Library of Spatial Analytical Methods. The Review of Regional Studies, 37(1):5–27, 2007.
[RMA11]Sergio J. Rey, Alan T. Murray, and Luc Anselin. Visualizing regional income distribution dynamics. Letters in Spatial and Resource Sciences, 4(1):81–90, 2011. URL: https://doi.org/10.1007/s12076-010-0048-2, doi:10.1007/s12076-010-0048-2.
[RSastreGutierrez10]Sergio J. Rey and Myrna L Sastré-Gutiérrez. Interregional inequality dynamics in Mexico. Spatial Economic Analysis, 5(3):277–298, 2010.
[RSL16]Sergio J. Rey, Philip Stephens, and Jason Laura. An evaluation of sampling and full enumeration strategies for Fisher Jenks classification in big data settings. Transactions in GIS, 21(4):796–810, Oct 2016. URL: http://dx.doi.org/10.1111/tgis.12236, doi:10.1111/tgis.12236.